Quality Magazine logo
search
cart
facebook twitter linkedin youtube
  • Sign In
  • Create Account
  • Sign Out
  • My Account
Quality Magazine logo
  • NEWS
  • PRODUCTS
    • SUBMIT YOUR PRODUCT
  • CHANNELS
    • AUTOMATION
    • MANAGEMENT
    • MEASUREMENT
    • NDT
    • QUALITY 101
    • SOFTWARE
    • TEST & INSPECTION
    • VISION & SENSORS
  • MARKETS
    • AEROSPACE
    • AUTOMOTIVE
    • ENERGY
    • GREEN MANUFACTURING
    • MEDICAL
  • MEDIA
    • A WORD ON QUALITY PUZZLE
    • EBOOK
    • PODCASTS
    • VIDEOS
    • WEBINARS
  • EVENTS
    • EVENT CALENDAR
    • QUALITY SHOW
    • IMTS
  • DIRECTORIES
    • BUYERS GUIDE
    • NDT SOURCEBOOK
    • VISION & SENSORS
    • TAKE A TOUR
  • INFOCENTERS
    • NEXT GENERATION SPC & QUALITY ANALYTICS
  • AWARDS
    • ROOKIE OF THE YEAR
    • PLANT OF THE YEAR
    • PROFESSIONAL OF THE YEAR
  • MORE
    • eNEWSLETTER
    • INDUSTRY LINKS
    • THE LEADERSHIP SURVEY
    • CLASSIFIEDS
    • MARKET RESEARCH
    • PRODUCT SPOTLIGHTS
    • QUALITY STORE
    • WHITE PAPERS
    • SPONSOR INSIGHTS
  • EMAG
    • eMAGAZINE
    • ARCHIVES
    • CONTACT
    • ADVERTISE
  • SIGN UP!
Vision & Sensors

Straight and True: Telecentric Lenses for Metrology and Quality Assurance

THE HIGH ACCURACY INHERENT IN TELECENTRIC LENSES IS OFTEN THE MOST COST-EFFECTIVE WAY TO SOLVE A MEASUREMENT PROBLEM.

By Nicholas Sischka
Lenses_FT
Optically, a telecentric lens is defined as a lens in which the chief rays are parallel to the optical axis. Source: Edmund Optics
Lenses_sl2

Figure 1: An object space telecentric lens, where the chief rays are all parallel to the optical axis in object space. Note that the field of view does not change regardless of where the object plane is positioned, as the chief rays defining the field of view are all parallel to the optical axis. Source: Edmund Optics

Lenses_sl3

Figure 2: An image space telecentric lens, where the chief rays are all parallel to the optical axis in image space. Note that the image height does not change regardless of where the sensor plane is positioned, as the chief rays defining image height are all parallel to the optical axis. Source: Edmund Optics

Lenses_sl4

Figure 3: A doubly telecentric lens, with the entrance and exit pupils projected to image and object space infinity, respectively. Source: Edmund Optics

Lenses_sl5
Figure 4: Comparison of jumpers on a circuit board. Figure 4a shows an image that has been taken with a fixed focal length lens. Figure 4b shows an image that has been taken with a telecentric lens. Note that the pins do not appear bent in the telecentric image. Source: Edmund Optics
Lenses_FT
Lenses_sl2
Lenses_sl3
Lenses_sl4
Lenses_sl5
September 8, 2015

Precision lenses do an excellent job conveying contrast and color from object to image, but they can do a poor job of transferring accurate dimensions, especially if they have small focal lengths. Traditional lenses work in the same way as the human eye: nearer objects appear larger than farther objects. This change in magnification with respect to distance is partially what allows for depth perception, but it will reduce the accuracy of a machine vision system that is being used for precise measurements. If a vision system requires the most accurate possible measurement, it is imperative to ensure that the relationship between an object’s dimensions and the corresponding image’s dimensions is well-defined and unchanging. For these systems telecentric lenses are required.

TECH TIPS

In practice, no telecentric lens is perfect. That is, no telecentric lens images only light entering parallel to the optical axis.

A telecentric lens may be characterized by its degree of telecentricity, or simply telecentricity, which is the deviation of the principal ray from parallelism to the optical axis.

Telecentricity is typically measured in degrees. So, for example, a lens with an object-space telecentricity of 0.3 degrees will accept light at angles of up to 0.3 degrees away from parallel to the optical axis.

Telecentric Lenses

Optically, a telecentric lens is defined as a lens in which the chief rays are parallel to the optical axis. That property has some interesting corollaries. Chief rays in a telecentric lens will be normal to the object plane, the image plane, or both; and the entrance pupil and/or the exit pupil is located at their respective infinities. The field of view of a telecentric lens is non-angular, meaning it doesn’t change size with distance from the lens. Finally, and most importantly for machine vision applications, magnification in a telecentric lens is independent of object distance. It is important to note that these are not unrelated properties, but are traits that all telecentric lenses have.

There are three different types of telecentric lenses, each of which have distinct properties. When a lens is referred to as simply a telecentric lens, it is most likely an object-space telecentric lens. Object-space telecentric lenses have their entrance pupil located at infinity in object space, which means the chief rays in object space are parallel to the optical axis (Figure 1).

Image-space telecentric lenses are the opposite: they have their exit pupil at infinity in image space and the rays in image space are parallel to the optical axis; meaning that the chief rays are normal to the image plane (Figure 2).

When both object-space and image-space telecentricity are incorporated into a single lens it becomes a bi-telecentric lens, also called a doubly telecentric lens (Figure 3).

The Benefits of Object-Space Telecentricity

An object-space telecentric lens only transmits chief rays that are perpendicular (or nearly perpendicular) to the entrance pupil. If two features of an object are separated by 12 mm, the rays the telecentric lens accepts retain that 12 mm separation all the way to the objective lens (scaling by the lens’s magnification). The position of the incoming ray from a given object feature remains the same regardless of the distance the lens is from the object. For example, the chief rays from the features separated by 12 mm are imaged by a .067X magnification telecentric lens at a distance separated by 800 µm on the detector — no matter the object distance. The invariability of magnification with object distance is independent of the depth of field, which is a function of f/#. Images created by a telecentric lens, just as those from a traditional lens, will increasingly blur as the object distance varies from optimum working distance; however, a telecentric lens makes it appear as if everything within the depth of field is at the same object distance.

Traditional fixed focal length lenses suffer from distortion: a change in magnification across the field. In the presence of distortion, the apparent size of an object varies with its position in the field of view. Telecentric lenses typically have much lower distortion than traditional lenses, such that the size of an image produced by a telecentric lens remains constant as the object distance and its position in the field vary (Figure 4).

This magnification invariance is where the object-space telecentric lens shows its value for metrology. Take, for example, the task of measuring the dimensions of parts as they pass by on a conveyor belt. Unless the placement is perfectly repeatable and the synchronization between camera and conveyor is equally perfect, each successive object will be imaged at a slightly different location in the field. In addition, products on the conveyor slightly undulate with the movement of the conveyor, putting each at a different distance from the lens. Both of these effects reduce the accuracy of any metrology done with a fixed focal length or a zoom lens, while a telecentric imaging lens will produce the same image even with these effects present.

Object-space telecentric lenses are also valuable for such activities as pick-and-place operations. A circuit board, for example, presents a three-dimensional scene. With a fixed focal length lens, parallax error can obscure more distant features behind nearer surfaces of components already placed on the board. The image created by a telecentric lens doesn’t suffer from parallax error; each position on the circuit board is imaged as if observed from directly above.

The Benefits of Image-Space Telecentricity

Image-space telecentricity has a corresponding set of characteristics. In the same way that magnification in an object-space telecentric lens does not change with object distance, magnification in image-space telecentric lenses does not change as the sensor shifts from its optimal position. This reduces fabrication and placement tolerance on the sensor, and leads to an even more accurate measurement.

 Another significant implication of the chief rays being normal to the image plane is that image-space telecentric lenses have uniform illumination across the field. Illumination across the image plane of a fixed focal length lens falls off as the 4th power of the cosine of the ray angle (cos4) relative to the optical axis. Since the angle is theoretically 0degrees and does not vary in an image-space telecentric lens, the illumination does not roll off and relative illumination remains at 100% across the full field. The lack of variation in incident angle also optimizes the performance of sensors that incorporate un-shifted microlenses to increase the effective fill factor. Microlenses are effective only for a relatively small angle of incidence, which is guaranteed all across the image sensor with an image-space telecentric lens.

Telecentric = Perfect?

A doubly telecentric lens is both image-space and object-space telecentric and, as might be expected, combines the features of both types of telecentricity. The field of view in a doubly telecentric lens is completely unaffected by change due to shifts in the object position or the sensor position, and they do not suffer from any cos4roll-off.

Another positive implication of double telecentricity is that the blur caused by defocus is symmetric. That is, as the object distance shifts out of the nominal depth of field, there’s no shift in the centroid of the image of the spot associated with a point on the object. In fact, there are some applications in which it may be advantageous to defocus an image to provide a more accurate determination of edge position in order to avoid sub-pixel interpolation — which can’t be done as accurately with the asymmetric blur of traditional fixed focal length lenses. Considering all of these advantages, telecentric lenses can seem unbeatable for many machine vision applications.

In practice, no telecentric lens is perfect. That is, no telecentric lens images only light entering parallel to the optical axis. A telecentric lens may be characterized by its degree of telecentricity, or simply telecentricity, which is the deviation of the principal ray from parallelism to the optical axis. Telecentricity is typically measured in degrees. So, for example, a lens with an object-space telecentricity of 0.3 degrees will accept light at angles of up to 0.3 degrees away from parallel to the optical axis. When telecentricity is examined in more detail, it can be found that it varies with field position and wavelength as well. The small residual distortion also varies across the field, in many cases non-monotonically. But due to the typically small amounts of distortion, it can be calibrated out quite easily for applications that demand the highest accuracy.

Even if all imperfections could be avoided, telecentric lenses have some characteristics that make them unsuitable for every application. First, the field of view of an object-space telecentric lens cannot exceed the size of the objective lens — so it cannot be used to image anything larger than the objective. This means that they are generally larger than an equivalent fixed focal length lens, which is a direct consequence of the fact that they have no angular field of view.  Likewise, the image sensor dimensions in an image-space telecentric lens cannot exceed the size of the back of the lens. As the size of the lens increases, so does the weight, and so does the cost.

 Still, the high accuracy inherent in telecentric lenses is often the most cost-effective way to solve a measurement problem. It is easy to get lost in the details of telecentric lens design, so one of the best ways to ensure proper lens selection for any application is to choose a vendor who has a range of standard telecentric lenses to choose from and the ability to produce custom designs. Take the time to discuss your application with your manufacturing partner, as proper lens selection will pay dividends far greater than the initial investment.

KEYWORDS: lenses lighting optics telecentric lenses

Share This Story

Looking for a reprint of this article?
From high-res PDFs to custom plaques, order your copy today!

Nicholas Sischka is the manager of sales operations, imaging, at Edmund Optics. For more information, email [email protected] or visit www.edmundoptics.com.

Recommended Content

JOIN TODAY
to unlock your recommendations.

Already have an account? Sign In

  • 2024 Quality Rookie of the Year Justin Wise 1440x750px banner with "Quality Rookie of the Year" logo inset

    Meet the 2024 Quality Rookie of the Year: Justin Wise

    Justin Wise is an exceptional individual who has been...
    Aerospace
    By: Michelle Bangert
  • Man with umbrella and coat stands outside while it rains at night looking at a building.

    Nondestructive Testing: Is there an ethics problem?

    I was a whistleblower who exposed fraudulent activities...
    NDT
    By: Dale Norwood
  • Unraveling Deflategate: Football stadium with closeup of football on field

    Unraveling the Tom Brady Deflategate

    The Deflategate scandal erupted following the 2014 AFC...
    Measurement
    By: Greg Cenker and Henry Zumbrun
Subscribe For Free!
  • eMagazine Subscriptions
  • eNewsletters
  • Online Registration
  • Subscription Customer Service
  • Manage My Preferences

More Videos

Sponsored Content

Sponsored Content is a special paid section where industry companies provide high quality, objective, non-commercial content around topics of interest to the Quality audience. All Sponsored Content is supplied by the advertising company and any opinions expressed in this article are those of the author and not necessarily reflect the views of Quality or its parent company, BNP Media. Interested in participating in our Sponsored Content section? Contact your local rep!

close
  • image: Meeting in a conference room, all three people looking at an ipad.
    Sponsored byInnovMetric

    Your Manufacturing Process Deserves Digitally Connected 3D Measurement Data

Popular Stories

Technician working with the Vision Engineering LVC200.

Difference Between Calibration and Verification

Woman working in quality control, measuring a workpiece.

AI’s Double-Edged Sword: Security and Compliance in Manufacturing

QM0525-FEAT-A3-Automation-p1FT-Quality-Inspection.jpg

The Next Frontier of Automation: Quality Assurance in an AI-Driven Era

April 29 Quality Advantive Live Webinar

Events

April 29, 2025

When AI Meets SPC: Unlocking Even More Value From Your SPC Quality Data

Discover how SPC's real-time data collection, monitoring and control capabilities provide the perfect foundation for AI/ML's predictive insights, enabling both immediate process optimization and long-term continuous improvement.

May 21, 2025

The Evolution of Laser Radar: Measuring Large Scale From Distance With High Accuracy

This webinar, featuring a live demonstration, will showcase the evolution of Hexagon’s direct scanning laser trackers: cutting-edge technology that now delivers traditional reflector-tracking accuracy to non-contact, large-part scanning.

View All Submit An Event

Products

Lean Manufacturing and Service Fundamentals, Applications, and Case Studies

Lean Manufacturing and Service Fundamentals, Applications, and Case Studies

See More Products
Play Quality's captivating word-guessing game! There's a new word every Friday.

Related Articles

  • Close-up of camera lens on black background.

    Precision in Optical Metrology: Telecentric vs. Endocentric Imaging

    See More
  • VS 0122 Sensor Trends Figure 1: Increasing sensor sizes are outgrowing the C-mount, leading to the introduction of new, larger mounting options.

    Growing Sensor Sizes And Uncertainty In Pairing Lenses and Cameras

    See More
  • machine vision system

    A Quality Assurance Toolset for Modern Manufacturers

    See More

Related Directories

  • R.J. Wilson Inc.

    Specializing in image formation components for machine vision. Products include standard and SWIR cameras, washdown camera enclosures, standard/high-magnification/telecentric/SWIR/liquid lenses, lens filters, LED lighting and control, laser pattern projection, custom robot pedestals, safety mats, and vibration sensing. Evaluation and testing help with a high level of support and experience. Worldwide shipping.
  • VISION fOr VISION

    VISION fOr VISION specializes in the development of software for machine vision applications. We implement standard and custom vision algorithms, tune them for best performance, adapt them to your platforms, and assemble complete solutions that suit your needs.
×

Stay in the know with Quality’s comprehensive coverage of
the manufacturing and metrology industries.

eNewsletter | Website | eMagazine

JOIN TODAY!
  • RESOURCES
    • Advertise
    • Contact Us
    • Directories
    • Store
    • Want More
  • SIGN UP TODAY
    • Create Account
    • eMagazine
    • eNewsletter
    • Customer Service
    • Manage Preferences
  • SERVICES
    • Marketing Services
    • Market Research
    • Reprints
    • List Rental
    • Survey/Respondent Access
  • STAY CONNECTED
    • LinkedIn
    • Facebook
    • YouTube
    • X (Twitter)
  • PRIVACY
    • PRIVACY POLICY
    • TERMS & CONDITIONS
    • DO NOT SELL MY PERSONAL INFORMATION
    • PRIVACY REQUEST
    • ACCESSIBILITY

Copyright ©2025. All Rights Reserved BNP Media.

Design, CMS, Hosting & Web Development :: ePublishing